Emre Enes Yavuz

About Me

Data-oriented, business economist with strong background in econometrics, causal inference and machine learning. Passionate to solve real-world business problems, hands-on experience in pricing and demand estimation.

Over 5 years experience in Python (pandas, numpy, scipy, pytorch, seaborn, scikit-learn, etc.) and R (tidyverse).

Contact Info

emre@eeyz.me \ 312-479-7891 in linkedin.com/in/eeyz/

Education

Ph.D., Economics, Northwestern University, Evanston, June 2023

Econometrics, Time Series, Applied Macroeconomics, Industrial Organizations, Deep Learning

MA, Economics and Finance, CEMFI, Madrid, 2017

Microeconometrics, Statistics, Quantitative Macroeconomics, Empirical Industrial Organizations

BA & BS, Economics & Mathematics (double major), Boğazici University, Istanbul, 2015 with honor

Experience

Pricing Manager / Economist, T-Mobile, USA, June 2023 - present.

- Causal inference methods to estimate demand, lift, promo effectiveness, price and tenure elasticities.
- Customer behavior modelling to optimize prices and promotions on rate plans and devices.
- Example methodologies; differences in differences, event study, synthetic control.
- Extensively used SQL and R.

Data Scientist (Part-time), Under Armour, March 2023 - June 2023.

- Developed and estimated a demand system for Under Armour products.
- Identified own and cross-price elasticities and optimize prices.
- I use SQL, AWS-Sagemaker, as well as Python.

Graduate Assistant, Northwestern University, September 2018 - March 2023

- Worked in several research projects by contributing to the research question, econometric analysis, and coding.
- Prepared and teach weekly practice sessions, held office hours for MBA and undergraduate courses.

Projects

Childhood Skill Formation and Intergenerational Earnings Mobility Trends, [Job Market Paper]

- Childhood skills are produced with parental investment, i.e., time and expenditure, and have long-term consequences in adulthood.
- I provide a new estimation without restrictive assumptions and find new results with significant implications.
 - Result I: Possible to recover any missing parental investment at an earlier age by investing for children now, i.e., investments at different ages are substitutes.
 - Result II: Return on parental investment gets quickly low for more educated parents as they invest more.
- More inequality in parental investment does not lead to less mobility in income distribution across generations since children of high-income parents benefit little from a large increase in parental investment because of low returns.
- I use Stochastic EM Algorithm with quantile regressions to estimate the complex empirical model.

Taxes and Transfers with Nonlinear Wage Dynamics, with Nezih Guner.

- Estimate a nonlinear and nonnormal wage process to capture rich productivity dynamics.
- Study implications for insurance mechanisms (progressive taxation and transfers) in a lifecycle model.
- Result: Insurance mechanisms are less valuable for poor but more valuable for rich people.

Invention and Technological Leadership during the Industrial Revolution,

with Carl Hallmann and Lukas Rosenberger.

- First empirical cross-country (France and Britain) evidence on innovation during the Industrial Revolution.
- Use historical patent data and generate additional data/variables using following tools;
 - Machine Learning to predict nationality from names, OCR with Python to digitize more data,
- Result I: France was as innovative as Britain and even more advanced in some sectors.
- Result II: Causal effect of technology transfer from Britain to France is local to more related sectors.

Are Recurrent Neural Networks (RNN) Useful for Macroeconomic Forecasting?

with Carl Hallmann and Federico Puglisi.

- Compare performance of RNN with Bayesian VAR in predicting macro variables e.g. GDP, inflation, Fed rate.
- RNNs performs similar to Bayesian VAR, but adding autocoder with more info improves the performance.

Skills

Python (pandas, numpy, scipy, pytorch, statsmodels, matplotlib) and R (tidyverse), Git, SQL, Snowflake. Machine Learning, Deep Learning, CNN, RNN, Logistic Regression, Logistic Regression, SVM, Tree-based Models.