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What is Childhood Skill Formation? Why is it Important?

• Skill formation starts during childhood in the family.
• Long-term effects in adulthood, such as human capital, education, income.



1

What is Childhood Skill Formation? Why is it Important?
• Parents invest time and expenditure for children to produce skill.

◦ Time: Games, learning and leisure activities.
◦ Expenditure: Toys, books, extracurricular activities.
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A Flexible Estimation: New Results, Significant Implications

This paper:
• Flexible estimation of childhood skill formation.
• No restrictive functional form assumptions.
• New results with significant implications.
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Childhood Skill Formation Function
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Result 1: Investment is more productive for low-skilled children

• The investment is more productive if the child currently has a low skill level.

• Current skill level can be low because of missing investments at earlier ages.

Implications
• Possible to recover missing investment at earlier ages by investing now.

• Policy can create a larger impact by focusing on low-skilled children,

• Not necessarily only at early ages, which currently capture a lot of attention.
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Result 2: Investment is more productive for more educated parents

• The investment is more productive if parents are more educated.
• Return to the investment, measured in elasticity, is decreasing,

◦ At a faster rate for more educated parents (more concavity).
◦ They hit the flat region more quickly than low-educated parents.
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Inequality in investment is rising, implications for mobility?



6

Inequality in investment is rising, implications for mobility?
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Rising inequality may not lead lower mobility across generations.
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How and Why different from the literature: CES case

• The literature typically uses the CES production function.
• Limited because it forces one of the following two cases:

Inputs are either Complements
• Investment is more productive for

◦ more skilled children,
◦ more educated parents.

• Return (in elasticity) is decreasing.

or Substitutes
• Investment is more productive for

◦ less skilled children,
◦ less educated parents.

• Return (in elasticity) is increasing.
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How and Why different from the literature: CES case

• The literature typically uses CES production function.
• Limited because CES forces one of the following two cases.
• My results suggest that it is restrictive.

Inputs are either Complements
• Investment is more productive for

◦ more skilled children,
◦ more educated parents.

• Return (in elasticity) is decreasing.

or Substitutes
• Investment is more productive for

◦ less skilled children,
◦ less educated parents.

• Return (in elasticity) is increasing.
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Data: PSID - CDS
Panel Study of Income Dynamics - Child Development Supplement

• Three periods 1997, 2002, 2007.

• Parental Investment: Time and Expenditure
◦ 24 hours diaries of children: Games, quality time, educational activities.
◦ Child-related expenditures: Books, toys, extracurricular activities.

• Noisy Childhood Skill Measures: Standardized cognitive tests.
◦ Letter-Word Identification, Applied Math Problems and Passage Completion.

• Income, years of education, household composition.
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Empirical Model: Bird’s-Eye View
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Empirical Model: Bird’s-Eye View
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Childhood Skill Formation Function

Let θ j be child’s skill level at period j,

θ j+1 = F(θ j,θP, I j,u j), u j ∼U [0,1].

Inputs:
• Current Skill Level: θ j

• Parental Education: θP = g(θ f ather,θmother)

• Investment: I j = h(t f ather
j , tmother

j ,m j)
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Childhood Skill Formation Function

Let θ j be child’s skill level at period j,

θ j+1 = F(θ j,θP, I j,u j), u j ∼U [0,1].

CES with Normal Noise

θ j+1 =
[
γθ θ

φ

j + γPθ
φ

P +(1− γθ − γP)I
φ

j

] 1
φ

exp(ε j), ε j ∼ N (0,σε)
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Childhood Skill Formation Function: Parametrize

Approximate the unknown skill formation function,

F(θ j, I j,θP,u j) =
K

∑
k=0

ak(u j)ϕk(θ j, I j,θP), u j ∼U [0,1]

where,
• ϕk’s orthogonal polynomials,
• ak(u j) is polynomial coefficients.
• Estimate for a grid {u0,u1, . . . ,uL} with quantile regressions.
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Childhood Skill Formation Function: Parametrize

F(θ j, I j,θP,u j) =
K

∑
k=0

ak(u j)ϕk(θ j, I j,θP), u j ∼U [0,1]

= a0(u j)+a1(u j)θ j +a2(u j)I j +a3(u j)θP +a4(u j)θ jI j +a5(u j)θ jI2
j . . .

where,
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Moment conditions to minimize

• Each part of the empirical model has a moment condition.
• Let R(θ ,X , Λ̃) denote all moment conditions and true parameter values solves,

Λ = argmin
Λ̃

E
[
R(θ ,X , Λ̃)

]
where,
• θ unobservable childhood skills,
• X all the data,
• Λ all parameters.
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Moment conditions to minimize

• Each part of the empirical model has a moment condition.
• Let R(θ ,X , Λ̃) denote all moment conditions and true parameter values solves,

Λ = argmin
Λ̃

E
[
R(θ ,X , Λ̃)

]
• Its sample counter part is not feasible because skills are not observable,

Λ̂ = argmin
Λ̃

1
N

N

∑
i=0

R(θi,Xi, Λ̃).
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EM Algorithm

Guess parameter values, Λ̂(0) and start iteration with s = 0.

• Simulate underlying skill levels for each child i,

θ
(s)
i ∼ f (θ | Xi, Λ̂

(s)) for i = 0, . . . ,N,

• Solve sample counterpart of minimization and update the parameters,

Λ̂
s+1 = argmin

Λ̃

1
N

N

∑
i=0

R(θ (s)
i ,Xi, Λ̃).
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Returns are decreasing and almost flat at top
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Current Skill Level and Investment are Substitutes

E
[

∂ 2 lnF(It ,θt ,θP,ut)

∂ ln It∂ lnθt

]
< 0
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Current Skill Level and Investment are Substitutes
Flexible CES with Normal Distribution
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Parents’ Education and Investment are Complements

E
[

∂ 2 lnF(It ,θt ,θP,ut)

∂ ln It∂ lnθP

]
> 0

E
[

∂ 3 lnF(It ,θt ,θP,ut)

∂ 2 ln It∂ lnθP

]
< 0
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Parents’ Education and Investment are Complements
Flexible CES with Normal Distribution
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More Negative Skewness for More Educated Parents
Children of high-educated parents are more subject to negative risk
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Rising inequality may not lead lower mobility across generations.
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Estimate a trend for mobility in earnings across generations

lnychild
ic = αc +βc lnyparent

ic

• yic is approximated by average earnings over ages around 40.
◦ As in Mazumder (2016).

• Group cohorts in 10 years in PSID.
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Intergenerational earning mobility trend seems flat
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Conclusion

• I provide a flexible estimation for childhood skill formation function.
• No restrictive functional or distributional form assumptions.

• Investment is more productive for currently low-skilled children.
• Policy interventions should focus on disadvantaged children even at later ages.

• Returns are low for high-income parents and high for low-income parents.
• Rising inequality may not lead to lower mobility.
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Empirical Model: Bird’s-Eye View
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Initial Childhood Skill Distribution

Let initial level of skills depend on age and parents’ education,

θ0 = F0(age0,θP,u0), u0 ∼U [0,1],

with u0 ∼U [0,1].
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Empirical Model: Bird’s-Eye View
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Parental Investment Function

Parental investment, time (tk
j ) and expenditure (m j), functions are given by,

m j = M(θ j,θP,y j,uM
j ),

tk
j = T k(θ j,θP,y j,uT

k j) for k = f ather,mother,

where y j is total household income and uM
j ,u

T
k j ∼U [0,1].
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Empirical Model: Bird’s-Eye View
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Last Period Skill to Years Of Education

• Binomial distribution for final years of education.

EduYears ∼ Binomial(n, p).

• n = 17 is max years of education.
• p is the probability parameter given by,

p = Λ(θT ,θP,ageT ).
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Empirical Model: Bird’s-Eye View
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Childhood Skill Measurement: Cognitive Tests

For child with skill level θ , probability of answering a question i in test t correct:

Probti =
exp(αt +βtθ −di)

1+ exp(αt +βtθ −di)
.

• Normalize one test as αt = 0,βt = 1.
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Moment conditions to minimize

• Each part of the empirical model has a moment condition.
• Let R(Θ,X , Λ̃) denote all moment conditions and true parameter values solves,

Λ = argmin
Λ̃

EX

[
E

Θ|X ,Λ̃

[
R(Θ,X , Λ̃)

]]
, (1)

where,

• X denote the all the data,
• Λ all parameters, and
• Θ unobservable skill levels.
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A feasible version of same minimization

• Start with a guess for parameter values, Λ̂(0),
• Solve minimization by iterations starting with s = 0,

Λ̂
(s+1) = argmin

Λ̃

EX

[
E

Θ|X ,Λ̂(s)

[
R(Θ,X , Λ̃)

]]
,

we have Λ̂(s) → Λ with large number of iterations.
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EM Algorithm

Guess parameter values, Λ̂(0) and start iteration with s = 0.

• Simulate underlying skill levels for each child i,

θim ∼ f (θ | Xi, Λ̂
(s)) for i = 0, . . . ,N, m = 0, . . . ,M,

• Solve sample counterpart of minimization and update the parameters,

Λ̂
s+1 = argmin

Λ̃

1
N

N

∑
i=0

1
M

M

∑
m=0

R(θi,Xi, Λ̃).
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Baseline CES: Inputs are Substitutes
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Cobb-Douglas: φ = 0



9

Alternative CES: Inputs are Complements
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Estimation Results for Aggregation Functions

Parental Education:

lnθP = lnθmother +0.81× lnθ f ather +0.48× lnθmother lnθ f ather

with 90% confidence intervals: (0.33, 2.02) and (0.13, 1.85).

Investment:

ln I j = ln tmother
j +0.76× ln t f ather

j +1.8× lnm j

with 90% confidence intervals: (0.30, 1.97) and (1.02, 3.17).
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No Upward Trend in Intergenerational Rank-Rank Correlation


	Data
	Empirical Model
	Estimation Algorithm
	Results
	Intergenerational Mobility Trends

